DHT11 — Датчик влажности и температуры


Измерение температуры и влажности при помощи датчика DHT11. 

Catcatcat_dht-11_150DHT11 недорогой цифровой датчик температуры и влажности. Он использует емкостной датчик влажности и терморезистор для измерения температуры окружающего воздуха, данные выдает в цифровой форме по шине типа 1-wire. В использовании он довольно прост, но требует точного определения длительности временных сигналов, чтобы декодировать данные. Единственный недостаток это возможность получения данных не чаще 1 раза в две секунды.

Особенности. · Температурная компенсация во всем диапазоне работы · Измерение относительной влажности и температуры · Калиброванный цифровой сигнал · Отличная долгосрочная стабильность показаний · Не требуются дополнительные компоненты · Возможность передачи данных на большое растояние · Низкое энергопотребление · 4-контактный корпус и полностью взаимозаменяемы

Детали. Для преобразования данных внутри датчика используется 8-битный микроконтроллер, В процессе производства датчики калибруются и калибровочная константа записывается вместе с программой в память микроконтроллера. Однопроводный последовательный интерфейс дает возможность быстрой интеграции в устройство. Его небольшие размеры, низкое энергопотребление и до-20-метром передачи сигнала, что делает его привлекательным выбором для различных приложений.

Диапазон измеряемых параметров.

Обзор:

Параметр Диапазон измерения Точность Разрешение
Влажность 20-90% ±5% 1
Температура 0-50°С ±2°С 1

Подробные спецификации:

Параметр Условия Минимальное Типичное Максимальное
Влажность
Разрешение   1% 1% 1%
      8 бит  
Стабильность     ±1%RH  
Точность 25°С   ±4%RH  
  0-50°С     ±5%RH
Взаимозаменяемость  полностью взаимозаменяемы
Диапазон измерения  0°С 30%RH   90%RH
   25°С 20%RH   90%RH
  50°С 20%RH   80%RH
Время отклика (в секундах) 1/e(63%)25℃, 1m/s Air 6 10 15
Гистерезис     ±1%RH  
Долговременная стабильность типичная   ±1%RH/year  
Температура    1°С  1°С  1°С
Разрешение   8 бит 8 бит 8 бит
Стабильность     ±1°С  
Точность   ±1°С   ±2°С
Диапазон измерения   0°С   50°С
Время отклика (в секундах)   6   30

Электрические параметры:

Параметр Режим Мин Типовое Макс Ед.изм.
Напряжение питания DC 3 5 5.5 V
Ток потребления Измерение 0.5   2.5 mA
  Ожидание 100   150 uA
  Среднее 0.2   1 mA

Габаритные размеры и подключение:

Catcatcat_dht-11_01a

Питание DHT11 составляет 3-5.5V DC. После подачи питания на датчик, необходимо выдержать паузу длительностью не менее 1 секунды перед началом считывания данных. Для фильтрации напряжения питания можно добавить один конденсатор 0,1 мкФ между Vdd и Vss.

Последовательный интерфейс (Single-Wire Двусторонний)

Весь обмен данными выполняется по одной одному проводу (шине). На шине может присутствовать только один датчик. Для получения высокого уровня используется подтягивающий резистор (5-10 кОм), т.е в пассивном состоянии на шине высокий уровень. Формат обмена данными может быть разделен на три этапа:

1) Инициализации. 2) Преамбула. 3) Передача данных. Инициализация.

Процесс чтения данных начинается с импульса инициализации который формирует микроконтроллер. Он должен установить на шине низкий уровень на время не менее 18 mS, для инициализации  DHT-11.

Catcatcat_dht-11_02n

Преамбула.

Микроконтроллер после формирования импульса инициализации должен сразу перевести порт в режим чтения (режим приема данных). Если датчик готов к передачи данных, он ответит сформировав преамбулу. Один период меандра длительностью ~160 us.

Catcatcat_dht-11_02b

Микроконтроллер получив ответ от датчика, может начать чтение данных.

Передача данных.

Данные представляют собой 5 байт данных, которые читаются по битно микроконтроллером, т.е всего 40 бит.

Catcatcat_dht-11_04

Первые два байта данные влажности (относительная влажность), целая и дробная часть. Третий и четвертый температура (градусы Цельсия), целая и дробная часть и пятый последний байт контрольная сумма, которая равна сумме первых 4 байт. К сожалению хотя и присутствуют байты отвечающие за десятые доли градуса и процента, реально контроллер датчика их не вычисляет (хотя это и понятно при такой точности это бесполезно), поэтому  в них всегда присутствуют нули. Если реально считывать эти байты то мы увидим, например:

bait0 = 41    // влажность bait1 = 0 bait2 = 31    // температура bait3 = 0 bait4 = 72    // контрольная сумма

Но нет худа без добра, если в этих байтах всегда нули, то можно это значение (аналогично как для контрольной суммы) использовать для достоверности передачи данных.

Данные кодируются длительностью высокого уровня в каждом бите, бит начинается стробом низкого уровня длительностью приблизительно 50-54uS, после строба идет высокий уровень, если длительность высокого уровня в пределах 24 uS, то это передается «0», если в пределах 70 uS — передается «1».

Бит ‘0 ‘:

Catcatcat_dht-11_09 Бит ‘1 ‘:

Catcatcat_dht-11_10

Catcatcat_dht-11_11 По окончанию передачи данных датчик передает последний строб, устанавливает на шине высокий уровень и переходит в спящий режим.

Логика чтения данных может быть следующая.

Вид передачи полностью:

Catcatcat_dht-11_12

Датчик подключается ко входу контроллера который может формировать прерывания по изменению уровня на входе. Для определения длительности импульса можно использовать таймер микроконтроллера.

Для демо проекта используем плату ILLISSI_B4_primum с установленным микроконтроллером PIC16F1936. Для индикации данные будем выводить, через USB порт на терминал программы AN1310 Microchip.

Catcatcat_dht-11_13

Вариант построение программа для чтения данных с датчика для компилятора MPLAB® XC8 Compiler v1.20. Для измерение длительности мы применим таймер Timer0. А для контроля моментов изменения сигнала на входах будем использовать возможность микроконтроллера формировать прерывания по изменению состояния на входах. Всё декодирование данных будет выполняться в прерывании (благо там минимум работы), поэтому для основной программы остается только дать «толчек» для выдачи данных и обработать их когда данные будут готовы.

Настройка прерывание для работы с датчиком

 IOCBP=0b00000000; // отключить все прерывания и сбросить все флаги
 IOCBN=0b00000000;
 IOCBF=0b00000000;
 INTCON=0b11001000;
/*        ||  | +---- сбросить флаг прерывания от изменеию состояния на входе
 *        ||  +------- разрешить прерывания по изменению состояния на входе
 *        |+---------- разрешить прерывания от переферии
 *        +----------- разрешить глобальные прерывания
 */
 OPTION_REG=0b11000010;// настройка таймера Timer0
/*                |+++---- PS<2:0>:010-1 : 8
 *                +------- PSA:0 = Prescaler is assigned to the Timer0 module
 */

Функция запуска измерения (её можно в ставить в главный цикл для постоянного получения данных)

if(DHT11==0)// запуск измерения
 {
       DHT11=1;         // включить цикл измерения
       TRISB=0;         // настроить порт на выход
       LATB0=0;         // установить низкий уровень
       __delay_ms(18);  // задержка в 18 миллисекунд (больше можно :))
       IOCBP0=1;        // настроить прерывание на входе RB0 на фронт
       IOCBF0=0;        // сбросить флаг прерывания
       TRISB=1;         // настроить порт на вход
       PREAM=1;         // поиск преамбулы
 }

Вариант обработки прерываний

//=====================================прерывания==================================
void interrupt my_isr(void) //
{
 if(IOCIF)
 {
   IOCIF=0; //сбросить флаг
   IOCBF0=0; //сбросить флаг
   if(DHT11)
   {
      if(IOCBP0)// если прерывания по фронту
      {
         IOCBP0=0; // отключить прерывание по фронту
         IOCBN0=1; // включить прерывание по срезу
         TMR0=0; // сбросить таймер
         TMR0IF=0; // сбросить флаг переполнения
         TMR0IE=1; // разрешить прерывания TMR0
       }
       else
       {
          dlinimp=TMR0; // сохранить значение таймера в регистр
          TMR0=0; // сбросить таймер
          TMR0IF=0; // сбросить флаг переполнения

          IOCBP0=1; //включить прерывание по фронту
          IOCBN0=0; //отключить прерывание по срезу
         LATB1=!LATB1; // переключить светодиод
          if(!TMR0IF)
          {
             if(PREAM)// поиск прембулы
             {
                if(dlinimp>80)
                {
                   PREAM=0;// преамбула принята
                   countbit=0;
                }
              }
              else
                {
                    if(countbit<8)
                    {
                    bait0<<=1;
                    if(dlinimp>30) bait0 |= 0b00000001;// определение бита и запись его в байт приема
                    }
                    else if(countbit<16)
                    {
                    bait1<<=1;
                    if(dlinimp>30) bait1 |= 0b00000001;// определение бита и запись его в байт приема
                    }
                    else if(countbit<24)
                    {
                    bait2<<=1;
                    if(dlinimp>30) bait2 |= 0b00000001;// определение бита и запись его в байт приема
                    }
                    else if(countbit<32)
                    {
                    bait3<<=1;
                    if(dlinimp>30) bait3 |= 0b00000001;// определение бита и запись его в байт приема
                    }
                    else if(countbit<40)
                    {
                    bait4<<=1;
                    if(dlinimp>30) bait4 |= 0b00000001;// определение бита и запись его в байт приема
                    }
                    countbit++;// увеличить счетчик бит
                }
             }
             else
             {
                ERROR_DHT11=1; // неисправность датчика
             }
          }
       }
     }
     if(TMR0IF)
     {
       TMR0IF=0;
       DHT11=0;
       TMR0IE=0; //запретить прерывания TMR0
      }

}//===================================end_interrupt=================================

Вывод: простой недорогой датчик влажности и температуры, для проектов бытового назначения. [box title=»Файлы для загрузки» color=»#521BDE»] Демонстрационный проект, MPLAB® X IDE v1.85, MPLAB® XC8 Compiler v1.20[/box]


Добавить комментарий